
A Very Quick Introduction to Data Compression

Jim Diamond



1

Outline

• Overview

• Information Theory

• Data Compression

• Example Compression Techniques

– Huffman

– LZW



2

Overview: 1

• There are two types of data compression

– Lossless data compression

– decompression reproduces the original data exactly

– Lossy data compression

– decompression reproduces an approximation of the original data

• Lossy compression (sometimes) suitable for

– image data

– movie data

– audio data

• Lossy compression not so good for

– program source files

– novels

– financial data



3

Overview: 2

• Model:

– finite set of symbols S = {s1, s2, . . . , sn}
– example: ASCII character set

– “sender” wishes to transmit a string of these symbols to “receiver”

– example: “Today is Friday”

Today← Decoder ←−−−−−−−−−−−−−−−− Encoder ←is Fr . . .

– Communication system can only transmit two symbols “0” and “1”
(i.e., bits)

• Objective: minimize number of bits transmitted while preserving the
original message.



4

Information Theory: 1

• Information content of a symbol is equivalent to the amount of
“surprise” one experiences upon receiving it

– example: message starts “Frida”

– little surprise if next symbol is “y”

– much surprise if next symbol is “q”

• More information is transmitted by an “unlikely” symbol than by a
“likely” one

– example above: after Frida has been sent, could transmit either
“0” or “1q”

• The expected symbol can be transmitted with fewer bits!



5

Information Theory: 2

• Example

Walk up to someone and ask them to complete this sentence:

“Peter Piper picked a peck of pickled ”

They will look you straight in the eye and say:



5

Information Theory: 2

• Example

Walk up to someone and ask them to complete this sentence:

“Peter Piper picked a peck of pickled ”

They will look you straight in the eye and say:

“0”



6

Data Compression

• Less bits needed for expected (i.e., probable) symbols

• Expectation based upon knowledge of sender and receiver

– non-English-speaking person unable to decode 0 in examples

• Compression requires:

– model of the data

– non-uniform probability distribution of next symbol to be transmitted

• If, given “all” knowledge,

P (si) = P (sj), ∀i, j ∈ {1 . . . n}

then need, on average, at least log2(n) bits to send next symbol



7

Huffman Coding: 1

• Concept: replace each (fixed-length) symbol si with a variable-length
bit string bi, transmit bi instead of si

• Assume each symbol si has a certain probability pi of being transmitted

• More probable symbols are assigned shorter bit strings

• Example:

– S = {a, b, c, d}, pa = 1/2, pb = 1/4, pc = 1/8, pd = 1/8

– ba = 0, bb = 10, bc = 110, bd = 111

– straightforward coding of S requires 2m bits to send a message
with m symbols

– Huffman coding requires

1× m
2

+ 2× m
4

+ 3× m
8

+ 3× m
8

(= 7m/4 bits on average)

– 12.5% saving



8

Huffman Coding: 2

• Need to know probabilities:

a) approximate by examining a large set of messages

b) examine entire message before sending

– then must also transmit frequency distribution to sender

c) examine (large) initial portion of message

• Other related possibilities

– start with uniform distribution, adapt it as symbols are seen

– cope with non-stationarity by periodically re-computing distribution

– use 2nd order probabilities pi|j: the probability of seeing si given
that the previous symbol was sj



9

Lempel–Ziv (& sometimes Welch): 1

• Concept:

– create a fixed-size “dictionary” of common sub-strings of the
message

– replace these variable-length sub-strings of symbols with fixed-
length bit-strings

– these bit-strings are pointers into the dictionary

• Compression achieved if there enough frequently occurring patterns in
the message

• This technique works well on messages such as English text



10

Lempel–Ziv (& sometimes Welch): 2

• Horribly Simplified Example: suppose the dictionary contains

...
774: "cat"
775: "catatonic"
776: "catastrophic"
777: "dog"
778: "dogma"
779: "dogmatic"
...

and the next piece of input to be compressed is

catastrophic rational dogmatic ...

then the very next compressor output would be

776



11

Now on to XML


