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Abstract

Popularity of social networks is growing rapidly and secure publishing is an important implementation 
tool for these networks. At the same time, recent implementations of access control policies (ACPs) for 
sharing fragments of XML documents have moved from distributing to users numerous sanitized 
sub-documents to disseminating a single document multi-encrypted with multiple cryptographic keys, 
in such a way that the stated ACPs are enforced. Any application that uses this implementation of ACPs 
will incur a high cost of generating keys separately for each document. However, most such 
applications, such as secure publishing, use similar documents, i.e. documents based on a selected 
schema. This paper describes RBAC defined at the schema level, (SRBAC), and generation of the 
minimum number of keys at the schema level. The main advantage of our approach is that for any 
application that uses a fixed number of schemas, keys can be generated (or even pre-generated) only 
once, and then reused in all documents valid for the given schema. While in general, key generation at 
the schema level has to be pessimistic, our approach tries to minimize the number of generated keys. 
Incoming XML documents are efficiently encrypted using single-pass SAX parsing in such a way that 
the original structure of these documents is completely hidden. We also describe distributing to each 
user only keys needed for decrypting accessible nodes, and for applying the minimal number of 
encryption operations to an XML document required to satisfy the protection requirements of the 
policy.
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Introduction
Recent years have seen the eXtensible Markup Language (XML) expand beyond its origins as a standard 
for web document authoring to become widely embraced as a data encoding format. For example, the
most recent releases of commercial database systems include utilities for exporting relational data sets into 
XML format to facilitate data exchange. This trend has naturally motivated researchers to investigate
fine-grained (i.e., element-level) access control models for XML data sets. While early approaches
employed server-side techniques such as materialized security views and query re-writing, there has been 
some concern as to whether such approaches can scale up to handle applications involving thousands of 
users and/or complex access control policies. More recently, attention has been focused on secure 
publishing solutions, in which an XML document is made accessible to all users (e.g., by hosting it on an 
HTTP server) through possibly insecure channels. The desired access control policy (ACP) is enforced by 
encrypting regions of the document using cryptographic keys. Each user is assigned, through a secure 
channel, a set of keys (a keyring) corresponding to the permissions they have been granted under the 
access control policy, which allows them to decrypt exactly a document fragment consisting of element 
nodes they have been granted access to. There are two crucial issues to note under this scenario: (1) the
access control policy is only capable of enforcing read operations, as there is nothing preventing an 
authorized user from altering a data field once they have decrypted it and republishing a new version, and 
(2) the document owner (author) relinquishes control over the document once it has been published: 
consequently, any changes to the access control policy, or to the contents of the document can only be 
imposed by publishing a new version of the document.

While secure publishing approaches can overcome many of the performance limitations of earlier
approaches, some care has to be taken in their implementation to ensure scalability. A naive attempt to
enforce an ACP may use super-encryption, where elements residing in the intersection of two or more 
document paths in an ACP are encrypted with multiple keys, which greatly increases the number of 
expensive encryption and decryption operations. We use a more efficient multi-encryption strategy, in 
which every node is encrypted with a single key. Additionally, a naive implementation may end up
assigning many keys, effectively trading the problem of view explosion for key proliferation. Key 
generation is expensive, and requiring each user to handle multiple keys complicates key management.
Hence, one seeks to minimize the number of keys required to enforce a particular access control policy. 
Since nowadays many documents conform to one or more schemas, it would be more efficient to generate 
keys once, at the schema level, and then re-use them for multi-encrypting documents valid in those 
schemas.

Contributions: In this paper, we address the performance issues alluded to earlier. Our main contribution
is a generalization of key generation to the schema level, allowing an access control policy to be defined 
over an entire class of XML documents specified by an XML Schema definition. Specifically, we define 
SRBAC, Schema-based ACP, based on our specification of grammar paths. This is a departure from 
previous research on grammar-level ACPs, which have mainly focused on DTDs and require separate key 
generation for each document valid for the grammar. Our second contribution is a specification of 
processing the schema S, which generates the keyring KS, consisting of the minimum number of keys 
needed. In general, key generation at the schema level has to be pessimistic because it must generate 
enough keys to correctly encrypt all possible documents valid in the schema. However, because these keys 
are generated only once, before any document is to be encrypted, the algorithms to determine the 
minimum number of keys necessary may afford less efficient processing. (This phase roughly resembles 
program optimization performed by the compiler before the program is executed). Our third contribution 
is a specification of a role-available keyring KS(R) which, for a given role R in the SRBAC policy, 
consists of keys that will be made available to the user in role R so that this user can access precisely the 
fragment of any document D, valid in S, allowed by this policy. Our fourth contribution is an efficient 
multi-encryption of XML documents in a single pass (using a SAX parser) in such a way that the 
decryption of multi-encrypted documents results in a well-formed XML document. The encrypted 
document hides all of the structure of the original document. While the decrypted documents are no 
longer valid in the original schema, one may create sanitized schema (for which such document will be 
valid), and use them to efficiently apply XML tools, such as XQuery for XML databases. Our current 
research concentrates on static documents, but using SAX parsing may allow considering streamed XML 
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documents (which will be a focus of future research). Our fifth contribution is a comparison of the 
efficiency of our approach and super-encryption. Our last contribution is that our key generation 
technique applies to any access control model, not only to the role-based model considered in this paper. 
Note that while encryption is expensive, comparatively speaking, validation is not that expensive and we 
can't know if a document is valid until it has been completely traversed, so we may perform several costly 
and wasteful encryptions before discovering that the document is invalid. In such a case, combining
validation and encryption only serves to slow down the validation, while performing two separate passes 
likely wouldn't take much longer and would avoid wasted encryptions. Therefore, we first validate the 
document and then encrypt it.

There are various areas where the technique described in this paper can be applied. Besides secure 
publishing mentioned earlier, it can also be used for areas such as providing secure data to medical 
organizations or social networks.

This paper is organized as follows. In Section 2, we describe related work. Section 3 describes RBAC at 
the document level, (DRBAC), and RBAC at the schema level, (SRBAC). In Section 4, we present our 
main results concerning SRBAC and key generation at the schema level, and briefly describe the 
implementation. Finally, in Section 5, we provide results of testing, and in Section 6 we describe 
conclusions and our future work. 

Related Work 
The increasing popularity of XML as a data encoding format has forced attention on the problem of 
controlling access to XML documents [De Capitani2003]. The majority of approaches to date (e.g. 
[Bertino2004], [Müldner2006], [Miklau2003] and [Kudo2000]) have focused on specification of access 
control policies at the document level, while a smaller number of proposals have additionally considered 
expression of policies over an entire class of documents at the schema level. [Bertino2002] and 
[Damiani2005] , [Damiani2002] specify systems in which discretionary access control policies can be
expressed over an individual XML document, or over a document type definition (DTD) defining a class 
of XML documents. [Kuper2005] defines a secure querying method for annotating a DTD with security 
policies, from which a security view is generated. This view consists of a sanitized DTD Dv, which
contains only the accessible portions of the original DTD D, and a function f, which specifies how to 
extract accessible data from instance XML documents conforming to D, in such a way that each query 
result generates a document conforming to Dv. By hiding f from clients, the schema and data in the
original document remain hidden, while clients are able to issue queries on accessible regions using Dv. 

More recent work focuses on the use of XML Schema as the schema specification language, in place of 
DTDs. [Fundulaki2004] describes a system which allows role-based access control policies to be defined 
at either the schema or document level. At the schema level, access permissions are defined on schema
objects (definitions of elements). [Ramaswamy2003] describes RBAC-based policy specifications at the 
schema level, augmented with policy constraints using Schematron. Note that in all of these works, access 
control is enforced entirely by a server component, with a customized view of a document, consisting of 
only the accessible portions of the requested document, being returned to each client in accordance with 
their access permissions on the original document. As a customized view must be generated in response to
each client access request, in scenarios with complex documents and/or several users, view explosion 
becomes a problem. 

In contrast, our strategy forgoes reliance on a centralized access control and instead publishes a single 
(partially-) encrypted copy of each XML document, and relies on public-key cryptography to enforce the 
desired access control permission. In this sense, it resembles the work of [Miklau2003] and 
[Müldner2006]. In addition to avoiding the view explosion problem (alluded to earlier) by publishing a 
single copy of each document, this type of approach is also more suited to deployment within 
decentralized architectures such as peer-to-peer, as it (1) facilitates the distribution of authentication and 
access control responsibilities between participating systems, rather than forcing reliance on a centralized 
component to enforce access control, and (2) is receptive to a variety of document distribution strategies, 
including broadcast, rather than being restricted to the client pull model. [Bertino2001] and
[Baldano2002] describe how to generate keys for documents and for DTDs/Schema; however, since at the 
schema level some conditions cannot be evaluated, keys must be generated at both the schema and 
document levels. 
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In this paper, we present key generation at the schema level based on the concept of symbolic grammar 
paths. In [Müldner2008], we describe the design of parameterized role access control policies, which has 
recently been implemented. 

Access Control Policies
This section starts with a definition of ACPs at the document level, and then introduces ACP at the schema 
level. It also gives several examples that will be used throughout the paper. 

Documents and Document Paths

In our approach, document fragments, or views, are described using document paths based on XPath 
[XPath2008]. For a document D, by PD we denote the set of paths in D. We allow disjunctions of 
document paths, using the | operator. To simplify the process of defining grammar path, we borrow the 
following two Unix/C conventions: 

parameterless macros may be declared using the #define command, and then called using 
$macro-name 
substitutions of the form 
string0{string1, string2,..., stringn}string
denote
string0string1string | string0string2string |...| string0stringnstring
where | denotes the alternative. Nested {} are also supported.

For example

        #define HP      /H/P
        $HP/{a, b, c/{d,e}}

stands for 

      /H/P/a | /H/P/b | /H/P/c/d | /H/P/c/e

Example 3.1. 

Consider a hospital, where there are three types of tests: basic, confidential and very confidential; and each 
patient has three attributes: name, Id, and perm (the last attribute determines whether or not patients with 
negative Ids will have access to very confidential tests). The path P: 

        #define hp      /hospital/patient
        P: $hp{/@Id, /basic/text(), /basic, [@Id<"0" AND @perm="true"]/veryConfidential/text()}

is a document path for the following document D: 

<?xml version="1.0" encoding="UTF-4"?>
<hospital>
        <patient  name="Kay" Id="-1" perm="true" >
                <basic>B1</basic>
                <confidential>C1</confidential>
                <veryConfidential>V1</veryConfidential>
        </patient>
        <patient  name="Smith" Id="-2" perm="false" >
                <basic>B2</basic>
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                <confidential>C2</confidential>
                <veryConfidential>V2</veryConfidential>
        </patient>
        <patient  name="Zen" Id="200" perm="true" >
                <basic>B3</basic>
                <confidential>C3</confidential>
                <veryConfidential>V3</veryConfidential>
        </patient>
</hospital>

The above path P defines a view of D consisting of values of Id for all patients (both attribute and its
value), the tagname <basic> and its text values, B1, B2 and B3; and the value of V1. □

Document-level Access Control Policies, DRBAC

In this section we define document-level RBAC, DRBAC and the related protection requirement. Here, we 
use a subset of XPath; a path expression p consists of one or more location steps; each location step 
operates on the child axis. A path is then of the form p | not p | p1 intersect p2 | p1 union p2 , and its
evaluation produces an ordered sequence of nodes. A valid path is any path which does not evaluate to an 
empty sequence. 

Definition 3.1. 

For an XML document D and a finite set Ψ of roles, the document-level RBAC (DRBAC) is a mapping
πD:Ψ→PD such that πD(Ψ) covers the set D; i.e., each element of D belongs to at least one document
path that occurs in the policy. Often, the mapping πD is tabulated and shown as a tuple [(R1, P1),(R2, 
P2),...,(Rn, Pn)] □

There are various views of the document D, and each view is defined by πD(R). The designer of the
policy for an XML document D may decide to leave some parts of D unencrypted (accessible to all users)
or to make them inaccessible to all users (i.e., to encrypt them, but not to provide the key used for
encryption of these nodes to any user). For the former case, the symbol ┃ is used, while for the latter case
we use the symbol •. Therefore, the actual definition of the document-level RBAC is that it is pair (πD,
┄), where ┄ is either ┃ or •. For simplicity (unless specified otherwise), in the sequel, we omit the
second element of this pair, and assume that by default it is always • (i.e. by default, elements of D not
covered by D are inaccessible to all users).

Definition 3.2. 

The document-level protection requirement is said to be satisfied under the following conditions. For an
XML document D, a finite set of roles Ψ, and the document-level RBAC πD:Ψ→PD a user in role R can
access precisely the set πD(R), and if the policy uses ┃ also those nodes in D which are not covered by
any path. □

Example 3.2. 

Consider the document D from [Example 3.1], and a set of roles Ψ = {Nurse, Physician, Resident, Smith}.
We define four document paths:

        #define hp      /hospital/patient 
        #define Sname   $hp[@name="Smith"]
        ND: $hp{/@Id, [@Id<0]/basic/text()}
        PD: $hp/{@Id, @name, basic/text(), confidential/text(), veryConfidential/text()}
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        RD: $hp{/@Id, [@Id>"100" AND @perm= "true"]/veryConfidential/text()}
        SD: $Sname/{@perm, basic/text(), confidential/text(), veryConfidential/text() }

We now define πD as: [(Nurse, ND), (Physician, PD), (Resident, RD), (Smith, SD)], which gives: 

the user in role Nurse access to Ids of all patients, and to the textual content of the basic test for 
patients whose Id is negative; 
the user in role Physician access to Ids and names of all patients, and to the textual content of the 
basic, confidential and very confidential tests; 
the user in role Resident access to Ids of all patients, and to the textual content of the very 
confidential test for patients whose Id is greater than 100 and perm is set to true;
the user in role Smith access to permissions, and the textual content of the basic, confidential and 
very confidential test for these patients whose name is Smith 

Since by default we use the role •, other elements of D are available to nobody. In Figure 1, B1, C1, etc. 
stand for the text contents of the basic tag, confidential tag, etc.; elements accessible to the user in various 
roles are labeled with dotted boxes containing first letters of the names of these roles; nodes which are not 
available to any user are not labeled. 

Figure 1. 

Labeled document tree for the hospital

Let us now use [Example 3.2] to compare super-encryption and multi-encryption. In the former case, 
nodes which are on the intersection of document paths would have to be encrypted and then decrypted 
with several keys. In the latter case, each node will be encrypted and decrypted with a single key. (In 
Section 6, we provide results of experiments comparing these two techniques.) 

Schemas and Grammar Paths
In this paper, we consider schema-oriented XML documents which have to follow the grammar rules 
specified by an associated schema, rather than schema-less documents which merely have to be 
well-formed according to the XML language specification [XML2008]. A commonly used grammar 
description is XML Schema [XML-Schema2008], which we also use in this paper. Throughout this paper, 
by LΣ we denote the language generated by the schema Σ. Specifically, if Σ is the schema of schemas, i.e.
the grammar defining schemas, then LΣ is the language of all schemas, and for S∈LΣ, a document D is
valid for S iff D∈LS. We consider only schemas for which there are no anonymous types (we can do it 
without a loss of generality because a schema with anonymous types can always have these types replaced 
by named types.) In the current implementation, we consider only schema with no cycles. By the top-level 
typename of the schema S, we mean the typename of the root element of any document valid in S. With 
each schema, we will associate a schema graph. The following examples show two schema and the 
corresponding graphs. 
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Example 3.3. 

Consider a reference letter, which provides a specification as to whether or not the letter is confidential, 
names of a referee and an applicant, and zero, one or more reviews, where each review provides the name 
of a supervisor, a numeric score, and a comment. The schema T for such a reference letter is given below.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
        <xs:element name="letter" type="LetterType"/>
        <xs:complexType name="LetterType">
                <xs:sequence>
                        <xs:element name="referee" type="NameType"/>
                        <xs:element name="applicant" type="NameType"/>
                        <xs:element name="review" type="ReviewType"/>
                </xs:sequence>
                <xs:attribute name="confidential" type="xs:boolean"/>
        </xs:complexType>
        <xs:complexType name="ReviewType" maxOccurs="unbounded">
                <xs:sequence>
                        <xs:element name="supervisorName" type="NameType"/>
                </xs:sequence>
                <xs:attribute name="score" type="xs:integer"/>
                <xs:attribute name="comments" type="xs:string"/>
        </xs:complexType>
        <xs:complexType name="NameType">
                <xs:sequence>
                        <xs:element name="first" type="xs:string"/>
                        <xs:element name="last" type="xs:string"/>
                </xs:sequence>
        </xs:complexType>
</xs:schema>

Schema graph for the Schema T (see Figure 2) replicates nodes that represent elements of the same type. 
This graph shows types used in the schema. The alternative representation, used by this paper, (see Figure 
3) will focus on element names from the schema, and will optionally show types of these elements (shown 
in dotted boxes with gray background). 

Figure 2. 

Schema graph for schema T (based on types) 

Figure 3. 
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Schema graph for schema T (based on element names)

Example 3.4. 

The schema S (see the schema graph in Figure 4) is a schema for which the document D from [Example 
3.1] valid. 

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
        <xs:element name="hospital" type="HospitalType"/>
        <xs:complexType name="HospitalType">
                <xs:sequence>
                        <xs:element name="patient" type="PatientType" maxOccurs="unbounded"/>
                </xs:sequence>
        </xs:complexType>
        <xs:complexType name="PatientType">
                <xs:sequence>
                        <xs:element name="basic" type="xs:string"/>
                        <xs:element name="confidential" type="xs:string"/>
                        <xs:element name="veryConfidential" type="xs:string"/>
                </xs:sequence>
                <xs:attribute name="name" type="xs:string"/>
                <xs:attribute name="Id" type="xs:int"/>
                <xs:attribute name="perm" type="xs:boolean"/>
        </xs:complexType>
</xs:schema>

Figure 4. 

Schema graph for schema S

In Section 3.1, we defined views of XML documents using document paths. To define views of a schema 
S, we introduce grammar paths. For a document D valid in S, a grammar path may be materialized to
produce the document path for D. This way, views of a schema determine views of documents valid in the
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schema. Here, we consider only absolute paths, but relative paths can be defined in the same way. We
denote by ΠS the set of all grammar paths for the schema S. A triple (schema S, grammar path G,
document D valid in S) defines a document path denoted by ΠS,D(G); we refer to this process as a 
grammar path materialization. 

We start by defining an atomic grammar path, which is of the form /c1/c2/.../cn. Each ci is a tag name 
optionally followed by a predicate in square brackets. (If the predicate is present, then ci is called the 
current context node.) A predicate is formed using standard Boolean operators: &&, ||, and ! (using 
standard associativity and precedence rules) and atomic predicates. There are three kinds of atomic 
predicates:

equality and inequality comparisons for values of attributes of type string or Boolean 
equality and inequality comparisons for the textual content of the current context node, specified 
using text()
arbitrary comparisons for values of numerical attributes

Note that if content of the element is mixed, i.e. contains both textual content and sub-elements then text() 
denotes the concatenation of all textual contents of this element. 

In order to support nested conditions, atomic predicates may also be preceded by one of the following 
unconditional paths, where the i-th component bi is a tag name: 

/b1/b2/.../bn/; i.e. the absolute path 
b1/b2/.../bn/; i.e. the relative path that starts from the current context node
../b1/b2/.../bn/; i.e. the relative path that starts from the parent of the current context node

Two examples of atomic grammar paths are:

        /H[@x > "1" || @x < "0" &&  @y = "0"]/P[text() = "John"]
        /H/B[../C/@z > "2" || /H/D/text() = "Mary"]/E

Atomic paths may have conditions involving nested paths, but they specify only a single node. Often it is 
convenient to specify subtrees, or parts thereof. Therefore, we define a simple grammar path, which is an 
atomic grammar path followed by a subtree operator of the form: 

      <text = O3; att = O3; tag = O3>

where

all fields (text, att, and tag) may appear in any order (and are separated by ";")
fields are optional, but at least one must be present 
O3 is described below by the following regular expression
O1=["*" "+"]; i.e. a character class consisting of * and +
O2 = (O1 | ".") | ("text" (O1?)); i.e. O1 or "." or "text" optionally followed by O1
O3 = O2 (","O2)*; ie. one or more O2, separated by";"

The meaning of subtree operators is explained in [Example 3.5]. Finally, a grammar path is an atomic 
grammar path, or a simple grammar path, or one or more alternatives of such paths. 

For a given schema, a grammar path is valid if it satisfies constraints imposed by the Schema, for example 
that an element name exists (in the given context), or the attribute value is a correct data type. 

Example 3.5. 
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Below, we use the following terminology: 

all descendants of c, meaning all descendants of c, including c; 
all proper descendants of c, meaning all descendants of c, excluding c; 
children of c, meaning only children of c and not grand-children, etc.

In all examples given below c is the last component of a simple grammar path: 

  All text descendants of c:                                    c<text=*>
  All proper text descendants of c:                             c<text=+>
  Text child of c (concatenated for mixed content):             c<text=.>
  All text descendants of c that are equal to "the":            c<text="the"*>
  All proper text descendants of c that are equal to "the":     c<text="the"+>
  Concatenated text children of c that is equal to "the":       c<text="the">
  All attribute descendants of c:                               c<att=*>
  All proper attribute descendants of c:                        c<att=+>
  All attribute children (attributes) of c:                     c<at =.>
  A specific attribute foo of c:                                c<att="foo">
  All "foo" attribute descendants of c:                         c<att="foo"*>
  All proper "foo" attribute descendants of c:                  c<att="foo"+>
  The tag of c:                                                 c<tag="."> or c
  All element descendants of c:                                 c<tag=*>
  All proper element descendants of c:                          c<tag=+>
  All element children (sub-elements) of c:                     c<tag=.>
  A specific tag foo of c:                                      c<tag = "foo">
  All element descendants called "foo" of c:                    c<tag="foo"*>
  All proper element descendants called "foo" of c:             c<tag="foo"+>
  All descendants of c:                                         c<*>
  All proper descendants f c                                    c<+>
  All children of c                                             c<.>
Finally, some examples of combined fields:
  All proper text descendants of c and all attributes of c:     c<text=*; att =*>
  Attributes foo and goo of c and the tag of c:                 c<att = "foo", "goo"; tag =.>
  All element descendants "foo" and "goo" of c, all "hoo" attribute decendants, and the text of c: 
   c<tag="foo"*, "goo"*; att="hoo"*; text=.> □

Example 3.6. 

Below, we provide three grammar paths R, C, and N for the schema T from [Example 3.3]: 

        R: /letter[review/score/text() > "7"]/referee/last<text=.>
        C: /letter[!(/referee/last/text() = "Smith" ||
           /referee/last/text() = "Kerry")]<att="comments", "score">
        N: /letter[@confidential = "false"]/{referee, applicant, review/supervisor}<text=+> | 
          /letter[@confidential = "true" && review/score/text() > "5"
             || applicant/last/text() = "Brown"]/review/supervisor<text=+>

□

Schema-level Access Control Policies, SRBAC
In this section we define schema-level RBAC, SRBAC and the related protection requirement. 

Definition 3.3. 
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For a schema S, and a set Ψ of roles, an SRBAC policy is a mapping πS:Ψ→ΠS.□

Example 3.7. 

For the schema T from [Example 3.3] we define the SRBAC policy πT: [(REFEREE, R), (COMMENT, 
C), (NAME, N)], where R, C and N are grammar paths from [Example 3.6]. Here: 

role REFEREE gives access to last names of referees for reviews with the score greater than 7
role COMMENT gives access to all comments and scores, provided that the referee last name is 
neither Smith nor Kerry 
role NAME gives access to all names for non-confidential letters and for supervisor names provided 
that the letter is confidential and the score is greater than 5, or last name of the applicant is Brown

Example 3.8.

For the schema S from [Example 3.4], we define the SRBAC policy πS: [(Nurse, N), (Physician, P), 
(Resident, R), (Smith, S)], where roles N, P, R, and S are defined as follows: 

        #define HP      /hospital/patient
        #define HPN     $HP<att="Id">
        #define SS      $HP[@name="Smith"]
        N: $HPN | $HP/[@Id<"0"]/basic<text=.>
        P: /hospital/patient<att="Id","name"; text=*>
        R: $HPN | $HP{/confidential<text=.>, [@Id>"100" && 
                @perm="true"]/veryConfidential<text=.> }
        S: $SS/{@perm, basic<text=.>, confidential<text=.>, veryConfidential<text=.>} 

The above SRBAC policy gives the patient Smith access to her data. Existence of multiple patients who
should have this kind of access will result in role proliferation. A solution to this problem is to use 
parameterized roles, and this is the subject of our current research, see [Müldner2008]. 

For every document valid in the schema S, a schema-based ACP defines document-based ACP for this 
document

Definition 3.4. 

For an XML Schema S, instance document D∈LS, and the schema-based policy πS:Ψ→ΠS, we define
the schema-induced document policy πS,D:Ψ→PD, by materializing grammar paths; i.e. πS,D(R)=
ΠS,D(πS(R)), for R∈Ψ.□

Now, we formulate the schema-level protection requirement in a manner similar to that from Def. 3.2: 

Definition 3.5. 

The schema-level protection requirement is said to be satisfied under the following conditions. For the
schema S, the schema-based ACP πS:Ψ→ΠS and role R∈Ψ, the user in a role R accessing a document
D∈LS, can read precisely the view πS,D(R). □

Example 3.9. 

For any document D valid in the schema S from [Example 3.4], grammar paths from [Example 3.8] will 
be materialized as follows: 

ΠS,D(N) consists of Ids of all patients, and the textual content of the basic test for patients whose Id 



Secure Publishing using Schema-level Role-based Access Control Po... file://localhost/Users/solid/Documents/courses/research/xmlr/encrypt...

12 of 22 7/7/08 10:05 AM

is negative 
ΠS,D(P)consists of Ids and names of all patients, and the textual content of the basic, confidential 
and very confidential tests 
ΠS,D(R) consists of Ids of all patients, and the textual content of the very confidential test for 
patients whose Id is greater than 100 and perm is set to true
ΠS,D(S) gives access to permissions, and the textual content of the basic, confidential and very 
confidential test for these patients whose name is Smith.

For the specific document D from [Example 3.1], these materializations will produce respectively paths 
ND, PD, RD and SD from [Example 3.2], and so for the policy πS from [Example 3.4], the induced
policy πS,D is the policy πD from [Example 3.2]. □

Key Generation and Document Encryption
In this section, we describe key generation at the schema level, and also explain how these keys are used 
to encrypt documents valid in this schema. As we indicated in the introduction, actions that result in key 
generation at the schema level may afford less efficient processing because they are performed only once, 
before any document is to be encrypted. In addition, a typical schema definition (and therefore, its 
schema graph) is quite small; hence, we assume that that the schema graph is stored as a DOM tree in main 
memory. However, for multi-encrypting documents (which may be very large), we will only consider 
single pass, SAX-based parsing. In our approach, we generate keys at the schema level. However, one can 
also use a lazy key generation: instead of pre-generating keys at the schema level, key generation will be 
triggered by the first document to be multi-encrypted. This would generate only the schema-based keys 
required for multi-encrypting this specific document (and they will be properly recorded). When the 
subsequent document is to be multi-encrypted, first we would determine if all necessary keys (at the 
schema level) have already been generated, and only generate any missing keys (at again recorded). 

We start this section with basic definitions. Then, we provide our most important result, which is a
schema-based key generation algorithm, and we define schema-based role-accessible keyrings. Next, we
describe an annotated schema and proceed to the second most important algorithm which uses an
annotated schema to efficiently multi-encrypt a document valid in this schema. Our description will
frequently refer to the schema S from [Example 3.4] (which we will call a "running example"), its graph
(see Figure 4), and grammar paths from [Example 3.8].

Introduction

Introduction

Encryption and Keyrings 

There are two kinds of encryption: symmetric encryption, which uses a shared secret key, and asymmetric 
encryption, which uses a public-private key pair. For asymmetric encryption, we will call the public key 
part a decrypting key, and the private key part an encrypting key. If it does not lead to confusion, then by 
a key we mean a decrypting key in an asymmetric encryption and a key in a symmetric encryption. In our 
approach, we allow either kind of encryption. When asymmetric encryption is used, the user in role R can 
only decrypt the document fragment. But, with symmetric encryption, they can also encrypt the decrypted 
m-document. To avoid this problem, the digital signature of the m-document would have to be made 
available.

Definition 4.1. 

A keyring K is a finite set of keys. For an asymmetric encryption, each key is a triple (key name, 
encrypting key, decrypting key), and for a symmetric encryption it is a pair (key name, key). By KS we
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denote a schema-level keyring for the schema S and its policy πS. □

Basic Notations 

Let us first consider various ways keys may be assigned to documents. Since views may be overlapping,
we can not assign keys per view. Indeed, if we did so, then for two overlapping views V1 and V2 we 
would have two corresponding keys k1 and k2, and the intersection of the two views would have to be 
super-encrypted (assigning keys per view would mean that for i=1,2, the user who has access to the view 
Vi would be given a key ki and so other options such as encrypting V1 with one key and V2-V1 with the 
other key would provide access to the part that is not allowed). What we need to do is to partition the set D 
(and at the same time each view) into disjoint sets, and then assign one key for each set in this partition. 
Therefore, for an arbitrary partition {P1, P2,...,Pn} of a set D, we need to find a disjoint partition. One way 
to achieve this goal is to create all possible differences of intersections of sets in the partition and 
remaining unions. Note that in our paper by a partition we mean a family of subsets of a set D that does 
not necessarily cover D. 

Here, we work at the schema level, rather than at the document level, but we need to generate keys in such 
a way that materialized grammar paths are disjoint. Since set operations for grammar paths (such as a 
union) are not defined, we now introduce symbolic grammar paths that allow such operations: 

Definition 4.2. 

Consider a set {Pi: i=1,2,...,k} of grammar paths. By a symbolic grammar path expression we denote a 
finite set of string of the form:

Figure 5. 

Since document paths support the above mentioned set operations, symbolic grammar paths can be 
materialized. 

Definition 4.3. 

Figure 6. 

□

Example 4.1. 

Consider first two grammar paths from [Example 3.8], and recalled below: 
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        #define HP      /hospital/patient
        #define HPN     $HP<att="Id">
        N: $HPN | $HP/[@Id<"0"]/basic<text=.>
        P: /hospital/patient<att="Id","name"; text=*> 

Here, we have three symbolic grammar paths: N-P, P-N and N*P. To show materializations of the paths, 
consider the document D valid in S (see Figure 1. For this document, we have: 

Figure 7. 

Note that the above materializations cover the same subset of D as materializations of original grammar
paths, but unlike the original grammar paths, they are disjoint. □

To generate keys for the schema S one can use the following technique. For every symbolic grammar 
path, generate a key for that path, and then use these keys to multi-encrypt materializations of document 
valid in S. However, by following this approach, we would not avoid generating keys for symbolic 
grammar paths that will always be materialized to empty document paths. Therefore, we use a different 
approach, described below. 

A target of a grammar path G is a single node in SG, or a node and a subgraph rooted at the node. An 
abstract value of G is a list of targets with the associated information about values of conditions that 
appear in G. Our algorithm finds abstract values of symbolic grammar paths corresponding to grammar 
paths in the SRBAC policy. We then use these values to avoid generating keys for these symbolic 
grammar paths whose abstract values are empty. Note that our algorithm additionally avoids creating 
redundant keys for two or more grammar paths whose abstract values are subsets; for example if the 
abstract value of G1 is a subset of the abstract value of G2 then the symbolic grammar path G1 - G2
evaluates to empty. Since at the schema level we do not know values of conditions that appear in grammar 
paths, we proceed as follows. By a configuration we refer to a bit-vector that represents true/false values 
of all conditions that appear in symbolic grammar paths (i.e., if the i-th condition evaluates to true, the i-th 
bit is set to 1, and 0 otherwise). We annotate every node of the schema graph with the list of pairs of the 
form (configurations, key).

Configurations

A configuration is a binary value of size k that represents true/false values of conditions. For a given 
grammar path X and a configuration C, values of all conditions in X are known, and therefore we can 
find an abstract value of X, which consists of one or more targets for the configuration C. A configuration 
index value is the integer decimal value corresponding to the binary value of this configuration. When it 
does not lead to confusion, we identify a configuration and its index value. Some configurations should 
be excluded e.g. if they specify true values for two conditions (involving the same attribute) that cannot 
be true at the same time (and arbitrary values for other conditions). 

Algorithm 4.1

A condition (with k variables) is a Boolean Expression B(x1,x2,...,xk) built from comparisons of the form: 
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xi RelationalOperator c; where xi and a constant c are of the same data type that supports linear order
(such as real or integer) and three standard Boolean operators: and, or and not, with the standard
associativity and precedence rules, and brackets, and a RelationalOperator is one of: >, <, <=, >=, =, !=.
For example, the expression B(x,y): x>"0" && y>"100" || x>="4" && !(x="99") is a condition. 

For given conditions B1,...,Bk with k variables x1,x2,...,xk, Algorithm 4.1 tests if for any subset (i1,...,im) 
with 0<=m<=k of the set (1,...,n) the expression of the form D(x1,x2,...,xk) =
Bi1&&Bi2&&...&&Bim&&!Bj1&&!Bj2&&...&&!Bjr where {j1,j2,...,jr} = {1,2,...,k} - {i1,i2,...,im}, is a 
falsehood; i.e. is false for all variables x1,x2,...,xk.

Finding abstract values

An abstract value of a grammar path G is defined to be a list consisting of the pairs (target, list of 
configuration ids). If this list contains all non-excluded configurations, then it is omitted. 

Algorithm 4.2. 

Input: A schema S, and an SRBAC policy πS:Ψ→ΠS, where ΠS ={G i: i=1,2,...,n} is a set of grammar 
paths, and role Ri is associated with the path Gi. 

Output: A table called Results storing abstract values of symbolic grammar paths. 

Outline of the algorithm. While here we say a "table", the actual implementation may use a different, more 
efficient data structure. However, in our explanation of the algorithm, we will assume that the table is 
used. There are two steps of the algorithm:

Create a list E of all non-excluded conditions C that appear in grammar paths in the policy, using 
Algorithm 4.1 
Compute abstract values of all grammar paths in the SRBAC. (In the description of an abstract 
value, we skip the list of configuration ids if this list contains every possible configuration.) Here, 
we compute symbolic products of pairs Gi*G j and sums Gi+G j, products and sums of triples, and 
so on; finally values of symbolic grammar paths. In this process, maintain three tables storing 
respectively products, sums and resulting grammar paths.

In more details, the table Products[i] stores an abstract value of products Gi1*...*Gij where 
1<=i1<=...<=ij<=n and 1<=j<=k. Here, the index i is a decimal value of the binary word of size k in which
bits at positions im are set to 1 and remaining bits are set to 0. For example, for k=4, Products[5] stores an 
abstract value represented by 0101, i.e. of the product G2*G4 and Result[5] will store the value of G2*G4
- (G1+G3). 

Execution of step 2 involves: 

compute (and store in arrays Products and Sums) abstract values of all Gi, then products (and sums) 
of two Gi. If any product is empty then store in Products the value 0 (Empty) for any i-tuple that 
uses this product. Also, store in Results 0 for symbolic grammar paths that use such products. For 
example, if G2*G4 is empty, store 0 in Products at positions 5, and 7 and in Results at the same 
positions. Note that before any products are computed, we check if the value 0 has already been 
stored for this product
repeat the above step for triples, etc. In computing unions, use previously computed values; for 
example to compute G1+G2+G4, we use the value of G1+G2 which has already been computed.

Example 4.2. 



Secure Publishing using Schema-level Role-based Access Control Po... file://localhost/Users/solid/Documents/courses/research/xmlr/encrypt...

16 of 22 7/7/08 10:05 AM

In our running example, we have four conditions: 

C1: (@Id<"0"), C2: (@Id>"100"), C3: (@perm="true") and C4: (@name="Smith") 

and there are 16 configurations; starting with configuration 0, for which all conditions are false, and 
ending with configuration 15, for which all conditions are true. Now, consider configuration (1100) with 
the index value equal to 12. However, C1 and C2 cannot be true at the same time, and so any 
configuration of the form 11xx is excluded. Therefore, the list of non-excluded configurations consists of 
integers from 0 to 11, and an abstract value of the grammar path N is (Id, basic/text(), (9,10,11)). 

Abstract values of all symbolic grammar paths are shown below (starting with abstract values of four 
paths), using the following abbreviations: 

I : {1,3,5,9,11}
B : basic/text()
C : confidential/text()
V : veryConfidential/text()

        {N} = <Id, (B,8,9,10,11)>
        {P} = <name,Id,B,C,V>
        {R} = <Id, C, (V,6,7)>
        {S} = <(B,I), (V,I), (C,I), (Perm,I)>

        Results[1] = S-(P+R+N) = (perm,I)
        Results[2] = R-(N+P+S) = 0
        Results[3] = R*S-(P+N) = 0
        Results[4] = P-(N+R+S) = <name,(B,0,2,4,6),(V,0,2,4,8,10)>
        Results[5] = P*S-(N+R) = <(B,1,3,5,7),(V,I)>   
        Results[6] = P*R-(N+S) = <(C,0,2,4,6,8,10),(V,6)>
        Results[7] = P*R*S-N = <(C,I), (V,7)>
        Results[8] = N-(P+R+S) = 0
        Results[9] = N*S-(P+R) = 0
        Results[10] = N*R-(P+S) = 0
        Results[11] = N*P*R-S = 0
        Results[12] = N*P-(R+S) = <B,8,10>
        Results[13] = N*P*S-R = <B,9,11>
        Results[14] = N*P*R-S= <Id>
        Results[15] = N*P*R*S = 0       

Schema-based Keyrings and Role-accessible Keyrings 

For a schema S and a schema-level access control policy πS:Ψ→ΠS, we use Algorithm 4.1, and for each 
non-empty value from the table Results, we generate one key. The keyring KS consists of all keys
generated this way. Note that in our running example, out of 16 symbolic grammar paths, only 8 are
non-empty. Therefore, where a brute-force approach would generate 16 keys for four roles for our
running example, our optimized algorithm will instead generate only 8 keys. Now, we show how for each
role R∈Ψ the keyring KS defines the set KS(R) of R-accessible keys. A user in role R will be provided
with the R-accessible keys so that for any document D valid for S, she can decrypt the view πS,D(R),
where πS,D is the schema-induced document policy. 

Algorithm 4.3. 

Input: A schema S, a schema-level access control policy πS:Ψ→ΠS and a role R∈Ψ.
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Output: Role R-accessible keyring KS(R). 

Method: KS(R) = {k∈KS for some symbolic grammar path G, the abstract value of {G} is a subset of the
abstract value of the grammar path πS(R)} □

Example 4.3. 

For our running example, let us denote by ri a key corresponding to the value of Results[i] which is not 
empty. Therefore, KS= {r1, r4, r5, r6, r7, r12, r13, r14}. Two examples of role-accessible keyrings are 
KS(Nurse) ={r12, r13, r14}, and KS(Physician) ={r4, r5, r6, r7, r12, r13, r14}.□

One can show that given a schema-level access control policy πS:Ψ→ΠS and XML document D valid in
S, if the user U in role R is provided only with R-accessible keys created by Algorithm 4.3 then the
protection requirement is satisfied; in particular U can access precisely the view V = πS,D(R). □

Schema Graph Annotations 

Based on the information stored in the table Results, we now annotate the syntax graph with a list of pairs
(key, list of integers representing configuration index values). We use ┄ to denote a key for the default
role; one of • or ┃. If the list consists of all permissible index values, then it is omitted. The annotated
schema graph will be used to guide the process of multi-encrypting an XML document D during its
SAX-based parsing. To annotate the schema graph, we traverse the table Results, and collect information
about all keys. Next, we traverse the schema graph again, and if the annotation is missing at any node we
add the annotation of the form (┄). For nodes that have already been annotated, we check if these
annotations contain all permissible index values, if any such values are missing they are added with the
default key ┄.

Example 4.4. 

Consider our running example. To annotate the node "veryConfidential" in the schema graph, we look in 
Results[] for the value V, and so its annotation is <(r4,0,2,4,8,10), (r5,I), (r6,6), (r7,7)>. For the complete
annotated schema graph see Figure 8.

Figure 8. 

Annotated syntax graph for schema S 
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Multi-encryption of Documents 

The encryption of the document D valid in the Schema S results in single well-defined XML m-document 
MD, which always has a root element <encrypteddocument>. Each part of the document D that is 
encrypted with a key "k" will be represented as a child of the <encrypteddocument> node using this 
format: <edata key = "k"> encrypted_data </edata>. Note that the structure of the document D is hidden 
inside of the encrypted_data part and is therefore not visible to users who are not authorized to decrypt 
the document (the <edata> tags are not nested inside of other <edata> tags). The encryption is performed 
by efficient, single-pass SAX parsing of D (performed in parallel with the traversal of the previously 
annotated schema graph GS). For each node d of D, the corresponding node s in GS is located, and its 
annotation is examined to determine which key should be used to encrypt this node (note that at that time 
we can determine values of all conditions and so we know which configuration should be used; unless 
nested conditions are used, which require additional treatment). Recall that the same key always encrypts 
the attribute and its value. 

Example 4.5. 

Consider the document D from [Example 3.1], (see Figure 9), in which dotted boxes attached to elements 
and attributes show the key that is used to encrypt this element. To explain the choice of keys, note that 
there are three patients; when the attributes of the first patient are processed, we know that that the name is 
not "Smith", Id is negative, and perm is true, and so the configuration 10 is used. Similarly, configuration 
9 is used for the second patient, and configuration 6 for the third one. This information is used to retrieve 
the key to be used for encryption from the annotated schema graph. 

Figure 9. 

Document D and keys used to encrypt this document.

The m-document MD looks like this (assuming that by default ┄ indicates that the node is not available to
any user, so the corresponding <edata> nodes are omitted; below, we show details of the leftmost "patient"
subtree and leave out other subtrees; encrypted data are also omitted):

<encrypteddocument>
        <edata key="r4">...</edata>
        <edata key="r14">...</edata>
        <edata key="r6">...</edata>
        <edata key="r2">...</edata>
        <edata key="r4">...</edata>
</encrypteddocument> 

Decryption of Multi-Encrypted Documents 

When the user U can prove that is entitled to play role R, she will first obtain the R-accessible keyring 
KS(R) via a secure channel, and then proceed to decrypt an m-document MD, to produce a document 
MD,R. The software system available for U will first identify a sub-keyring K1 of KS(R) consisting of 
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keys needed to decrypt M, and then apply keys available in K1 to perform decryption. The output from 
the decryption is a single XML document. Given this document, U may use the system to create a 
sanitized schema (showing only accessible parts of schemas), which would allow them to efficiently apply 
XML tools, such as XQuery for XML databases. One can show that given a schema-level access control 
policy and XML document D valid in S, if the user U in role R is provided only with R-accessible keys 
KS(R), then the protection requirement is satisfied. □

Example 4.6. 

Consider the m-document from [Example 4.5], using the schema-based ACP policy from [Example 3.8].
Recall from [Example 4.3] that KS(Physician) ={r4, r5, r6, r7, r12, r13, r14}. Assuming that the user
plays the role Physician, the decrypted file will look as follows (note that in this example, tags are 
encrypted and so their respective values have been concatenated): 

        <encryptedtag name="Kay" Id="-1">B1C1V1</encryptedtag>  

□

Implementation 

Our implementation uses the C++ language, with external libraries to support XML usage and 
cryptographic functions; specifically the Xerces-C++ XML toolkit from Apache [Xerces2008], and 
Crypto++ [Crypto++2008]. First, the schema file is parsed and loaded into memory represented as a tree 
like structure (a schema graph). Once the tree is constructed, the access control policy file will be parsed 
and can be validated for semantic correctness against the schema in memory (although this is not currently 
completed). Lastly, all of the information that the encryption process requires will be saved into a file that 
can be loaded at a later point in time. Currently, this file is a simple xml file that contains the generated 
keys, schema graph and annotations, as well as the set of conditions specific in the access control policy. 

The encryption process works by firstly re-loading (if necessary) the data saved to the xml file back into 
memory, and next the document to be encrypted is parsed with a SAX parser. Each node in the document 
will be encrypted in the order they appear in the document, with nodes being queued if there is not 
enough information available to encrypt them at the time they are first encountered (this can happen when 
the access control policy specified a condition for this node which cannot be calculated until a node later 
in the document is parsed). The encryption process is implemented in such a way that the algorithm used 
to perform the encryption can be changed very easily, so either a symmetric or asymmetric algorithm can 
be used based on user preference. It is also possible to extend the implementation to provide a run time 
facility for selecting an encryption algorithm.

Nested paths to arbitrary nodes in conditions are supported through a combination of data caching and a 
queue. During encryption, each node to be encrypted is added to the end of the encryption queue. 
Additionally, if the node is an attribute or text node that is referenced by conditions, the value of this node 
is cached in the global value table. The encryption queue is then flushed, by trying to encrypt as many 
nodes from the front of the queue as possible. A node can only be encrypted and removed from the 
queue if all of its dependencies are met. A node with no condition has no dependencies, and can be 
always encrypted. A node with a condition has dependencies, and the global value table is searched to 
ensure that all dependent attribute and text nodes have values within this table. If any dependent node is 
missing a value, this node cannot be encrypted, and no further nodes flushed from the queue. Otherwise, 
the condition can be evaluated (determining the key to use for encryption) and then the node is 
encrypted.

Results of Testing 
We performed testing of our implementation, comparing the time required to multi-encrypt (and decrypt) 
against the time spent when super-encryption was used. The detailed description of steps performed in 
testing is provided below: 
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For the schema S from [Example 3.4], we considered the SRBAC policy S from [Example 3.8] ,
and determined the number of keys generated by our implementation.
For the same schema S, we considered two documents valid in this schema; document D from 
[Example 3.1] and document D2, which is similar to D (except it had much longer text values and 
different values of attributes). For both of these document, we also considred the induced DRBAC 
policies for these documents. .
For each of the two documents D and D2, we multi-encrypted them four times using our approach, 
measured the time needed to encrypt, and recorded the average multi-encryption time
For each of the two multi-encrypted documents MD and MD2, we decrypted themfour times for all 
four roles, measured the time needed to decrypt, and recorded the average decryption time
For each of the two documents, we generated keys and super-encrypted these documents by 
performing the SAX traversal of the document, using the following approach: 
a) for every node x in the intersection of document paths there is a keyring consisting of m keys 
(one for each path); and the node x is super-encrypted with all these keys. The user in any role R 
associated with the path P from the intersection will receive the entire keyring. 
b) to satisfy the protection requirement, keys are reused based on the following principle. Suppose 
that in performing the SAX traversal of a document, we have encountered the node x as described 
above (and generated multiple keys), and then we have encountered the node y in the intersection 
of the same document paths. Then, the same keyring is used (i.e. no new keys are generated), and 
the node y is super-encrypted with keys from this keyring. 
For each of the two documents D1 and D2, we super-encrypted them using the approach described 
above, and measured the time needed to encrypt 
For each of the two super-encrypted documents MD and MD2, we decrypted them four times for all 
four roles, measured the time needed to decrypt, and recorded the average decryption time 

Results. 

The total number of keys generated at the schema level was 8, while the number of keys generated at the 
document level (for super-encryption) was 17 for both documents. The time needed to generate keys at 
the schema level was 0.0279024. The average time needed respectively for multi-encryption and 
super-encryption of the document D was 0.0007776830 and 0.0019404000. For the document D2, the 
average time was 0.0022022350 and 0.0042952375. The average time needed respectively for
decryption for the role Physician for the multi-encrypted and super-encrypted document MD was 
0.00125512 and 0.00368630. For the document MD2, the average time was respectively 0.00633886 and 
0.00972875.

Conclusions. 

Our testing proved the expected superiority of multi-encryption over super-encryption. Approximately 
half the keys were generated (although at the schema levels we generate keys for all valid documents). 
While multi-encryption incurs the initial cost of time spending on key generation, our tests show that on 
average for multi-encryption, the encryption time and the decryption times were between 30 and 50 
percent shorter.

Conclusions and Future Work 
In this paper, we provided a description of role-based ACPs for defining permissions for fragments of 
XML documents, both at the document and the schema level. Using our approach, keys can be generated 
at the schema level and then only required keys may be assigned to specific documents valid for the 
schema. A complete system was designed and implemented. 

Our future work includes full optimization of the algorithm which generates keys at the schema level, 
removing some restrictions on XML documents, such as IDREF attributes, and designing and 
implementing re-usability of keyrings when a document or ACP is modified. Also, we will start using our 
approach to develop secure publishing solutions in areas such as social networks. 
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