

Succinct Access Control Policies for Published XML Datasets

Tomasz Müldner1, Jan Krzysztof Miziołek2, Gregory Leighton3
1Jodrey School of Computer Science, Acadia University, Wolfville, N.S. Canada

tomasz.muldner@acadiau.ca

2IBI AL, University of Warsaw, Warsaw, Poland
jkm@ibi.uw.edu.pl

3Department of Computer Science, University of Calgary, Calgary, Canada
gleighto@cpsc.ucalgary.ca

Keywords: Access control, XML, parameterized roles.

Abstract: We consider the setting of secure publishing of XML documents, in which read-only access control policies
(ACPs) over static XML datasets are enforced using cryptographic keys. The role-based access control (RBAC)
model provides a flexible method for specifying such policies. Extending the RBAC model to include role
parameterization addresses the problem of role proliferation which can occur in large scale systems. In this
paper, we describe the complete design of a parameterized RBAC (PRBAC) model for XML documents. We
also describe algorithms for generating the minimum number of keys required to enforce an arbitrary PRBAC
policy; for distributing to each user only keys needed for decrypting accessible nodes; and for applying the
minimal number of encryption operations to an XML document required to satisfy the protection requirements
of the policy. The time complexity of our approach is linear w.r.t. document size and the number of roles.

1 INTRODUCTION

There is growing interest in providing controlled and
secure access to XML documents [(Bertino et al,
2002), (Bertino et al., 2004), (Damiani et al, 2002),
(Devanbu et al, 2001)]. In this context, controlled
access allows the owner of data to specify permission
policies indicating which users can access specific
documents, or parts thereof. Secure access to data
means that data is confidential, i.e., visible only to
authorized parties. Since XML data has become a de
facto standard for many applications, in particular for
Web applications, much of the research done on
controlled access in recent years deals with data in this
format. In addition to proposed standards for
encrypting portions of an XML document, such as the
W3C XML Encryption Syntax and Processing
recommendation (W3C XML Encryption, 2001),
secure publishing approaches have been proposed in
the research community that illustrate how multiple

users holding varying permissions over an XML
document can gain controlled access to the same
version of that document, through the selective
application of cryptographic keys [(Bertino et al,
2002), (Mikalu et al, 2003), (Müldner et al, 2006)].
Using this technique, a single version of an XML
document is published (e.g., posted to an HTTP
server). Each user is provided with a set of keys via a
secure channel; by applying her available decryption
keys, a user gains access only to the portions of the
document authorized by the designated ACP. For
example, the contents of a statistical or scientific
database may be periodically sanitized (to remove
sensitive information), exported as XML, and
published. In such a setting, it is important to note that
each published document is static, and hence access
control policies only allocate read permissions. The
role-based access control (RBAC) model provides a
powerful and flexible method for specifying such
policies. However, the RBAC model is susceptible to
role proliferation. For example, thousands of scientists

may be granted access to various parts of an XML
dataset; the access permissions accorded to each
scientist may vary according to their specialization and
their affiliation. In the worst case, it is possible that a
role-based policy must assign a unique role to each
scientist. The concept of role parameterization has
been shown to be an effective solution to role
proliferation (Ge et al, 2004); instead of defining a
separate role for each scientist, one can use a much
smaller number of roles and parameterize each role
with variables representing area of specialization and
affiliation. With a smaller number of roles, it becomes
easier to formulate and enforce the desired access
control restrictions.

In this paper, we introduce techniques that
can be used to implement controlled and secure access
to published XML documents. Specifically, we define
parameterized role-based ACPs (PRBAC policies);
each such policy consists of a set of rules associating a
role with one or more views (or fragments) defined
over an XML document. Policy rules may contain role
parameters and/or system variables. Once a user is
authenticated to play role R, any role parameters and
system variables are instantiated and the user can
access only those views which are associated with role
R. We have designed a key assignment algorithm
which, given a PRBAC policy and an XML document
(or dataset), generates the minimal number of keys
required to enforce the stated policy. Generated keys
are used to multi-encrypt a document so that each
element of the document is encrypted with at most one
key. Since each view may be encrypted with multiple
keys, users playing a specific role R are provided with
an R-accessible keyring, consisting of the set of keys
needed to decrypt and access exactly the document
portions they are allowed to see.

This paper is organized as follows. Section 2
describes related work. Section 3 introduces
preliminary notation and concepts and Section 4
defines the language of parameterized roles and the
PRBAC model. Section 5 describes key generation
and multi-encryption of documents. Section 6
describes areas for future work. Because of space
restrictions, proofs are omitted.
Contributions
Our contributions include the complete description of
a PRBAC model tailored for static, published XML
datasets. To our knowledge, this is the first
formulation of such a model. We also detail an
approach that, for a given uninstantiated PRBAC
policy (i.e. even before values of parameters and
system variables are known) and XML document D

(1) generates the minimum number of keys needed to
multi-encrypt D; (2) applies the minimal number of
encryption operations on D needed to enforce the
PRBAC policy; and (3) for each role R in the PRBAC,
generates the R-accessible keyring. All of these steps
can be carried out using two SAX-based traversals of
D.

2 RELATED WORK

Motivated by the increasing use of XML as a data
representation format, several access control models
specifically tailored for XML have been proposed in
recent years. Such approaches permit the formulation
of fine-grained access control policies at the schema,
document, and/or element level. At a high level, it is
possible to distinguish between materialized view-
oriented approaches, in which client queries are
answered over a sub-document (view) generated by
the database management system, containing only the
accessible regions of an XML database.[(Bertino et al,
2002), (Damiani et al, 2002)], and secure publishing
approaches (Miklau et al 2003) and (Müldner et al,
2006), in which a single, partially-encrypted version of
a document is distributed and access control policies
are enforced using public-key cryptography. While
materialized view-oriented approaches hide the
original document from the client, a very large number
of materialized views may be required in applications
dealing with large, complex documents and/or several
users. Secure publishing approaches are designed for
cases in which it is unnecessary, and even undesirable,
to allow users direct access to a database, and instead
provide to users a published, static “snapshot” of the
database contents. Our approach follows the secure
publishing paradigm.

Role based ACPs have been extensively
researched [(Ferraiolo et al, 2001), (Osborn et al,
2000), (RBAC, 2008), (Wang et al, 2004)]. (Ge, 2004)
describes an extension to the role-based access control
model in which parameterized roles are used to deal
with scenarios in which data access is dependent on
certain characteristics held by an individual user. In
applications with a small number of users, it is feasible
to define a separate role for each individual user, yet
this approach clearly becomes unmanageable if the
user base is moderately large. Rather than defining
several thousand roles with a membership of one, an
administrator can define a single, parameterized role,
and specify an access control rule which dictates
access to specific data. Our approach applies the

notion of parameterized roles to ACPs for XML
documents, allowing them to be used for expressing
access control policies.

3 PRELIMINARIES

3.1 Introduction to Roles

In most systems, access rights are defined using access
control policies (ACPs) which state which subjects
have specific rights. In the role-based access control
model (RBAC), users are identified through roles, and
access rights are associated with each role. When a
user is assigned to a role, they acquire the role’s
permissions.

In general, XML access control policy rules are
five-tuples (subject, resource, action, permission,
propagation), with actions such as read, write, or
modify; permissions such as add or remove; and a
propagation policy that allows one to limit the rule to a
local scope or apply it to a more global scope
(Fundulaki et al, 2004). In this paper, we consider only
read access (since we focus on secure publishing
scenarios, writes are not applicable), and we do not
consider various permissions. We fix a no propagation
policy: specifying an element e in an access control
rule applies the rule only to e, and not to other
elements within the sub-tree rooted at e. Therefore,
role-based access control rules for XML documents in
this paper will consist of pairs of the form (role,
resource), where a resource is a document fragment
specified using an XPath expression (XPath, 2008).

3.2 Documents and Views

The focus of our work is to define ACPs for fragments
of XML documents, which we call views. In our
approach, we publish a single multi-encrypted XML
document (or dataset).

We assume that at the system level, there are
pre-defined system variables (such as user ID), and we
use identifiers starting with $ to denote these variables
(e.g., $ID). System variables are typed using XML
Schema types (XML Schema, 2008) (e.g., $ID:
xs:integer), and they must remain static during the
course of a user session (i.e., we do not consider
dynamic system variables representing values such as
the current time or the number of users currently in the
system). In other words, there is a fixed set of static
variables, and for each user values of all these

variables are initialized and do not change during the
session, i.e., until this user logs off.
Views are specified using a subset of XPath
expressions referred to as document paths. Document
paths may have conditions, and in XPaths these
conditions use element names and attributes. Here, we
extend XPaths and allow free variables to appear in
conditions. There are two kinds of free variables: those
that represent system variables and whose names start
with $, and those that represent formal parameters and
whose names start with % (for more on formal
parameters of roles, see Section 4.1). We assume that a
single comparison in the path can use at most one free
variable; e.g. we don’t allow conditions of the form
[$Id = %Id].
Definition 3.1
A local document path is a document path with no free
variables. A global document path is a document path
which is not local. A global document path is called
instantiated when each occurrence of free variables is
replaced by some value.�

For a document D, by PD, loc we denote the set of
local paths in D. Each local document path defines a
fragment of the document D, which we call a view of
D (and we frequently refer to the path P as the view P).
Similarly, by PD, glob we denote the set of global paths
in D, and the set of all document paths is denoted by
PD = PD, loc ∪ PD, glob. A local path and an instantiated
global path each define a fragment of the document D.

3.2 Multi-encryption

In this section, by a key we refer to a symmetric
cryptographic key (e.g., an AES key). A keyring is a
set of keys. An ACP may define multiple views for a
single document. By the multi-encrypted document m-
document, we denote a document with an associated
keyring �, in which various views may be encrypted
with different sets of keys from �. However, no node
in the m-document is super-encrypted, i.e., encrypted
more than once. Based on permissions defined in the
ACP, users will be provided a subset of � enabling
them to decrypt exactly those views they are entitled to
see.

4 ROLE BASED ACCESS
CONTROL

In this section, we first describe roles and then use
roles to define the document-level PRBAC.

4.1 Language of Roles

In our access control model, roles can be
parameterized or parameter-less. Parameterized roles
contain typed parameters. They are useful because
they help to avoid hard-coding multiple roles which
provide permissions depending on external values
known when the role is being assigned; for example:
• There are many departments with different names.
• There is a “security level” attribute and permissions

depend on the given security level.
A parameterized role is called instantiated if all its

formal parameters are replaced by actual values.
Let N be the set of role names, P the set of

parameter names, and T the set of parameter type
names (we assume that these three sets are mutually
disjoint). We define the alphabet A as the union N ∪ P
∪ T ∪ {(,), ;}. We write role names in upper case
(e.g., STUDENT). Parameter names start with %.
Definition 4.1
A role grammar

�
 over the alphabet A is defined as

follows:
 role := roleName | parameterizedRole
 parameterizedRole := roleName ‘(‘ rolePars ‘)’
 rolePars := formalPar | formalPar ‘;’ rolePars
 formalPar := parName‘:’ parTypeName

where roleName∈∈∈∈N, parName∈∈∈∈P, and
parTypeName∈∈∈∈T. �
Example 4.1
An example of a parameterized role is:

USER(%id : xs:integer; %name : xs:string). �

4.2 Simple Roles

In Section 4.1 we defined the role grammar �, and by ��
 we denote the language of all roles.

Definition 4.2
For an XML document D and a finite set of simple
roles ����, the document-level ACP is a mapping �D: 	

PD such that �D(�) covers the set D; i.e. each
element of D belongs to at least one document path
that occurs in the policy. Often, the �D mapping is
tabulated and shown as a tuple [(R1,P1), (R2,
P2),...,(Rn,Pn)]. �

For a simple role R�
, if �D(R) is a local
document path then it defines a view of D. If �D(R) is
a global document path that contains free variables
(system variables or formal parameters for a
parameterized role R), then once this path is
instantiated, it defines a view of D. The designer of a
PRBAC policy for an XML document D may decide
to leave some parts of D unencrypted (accessible to all

users) or to make them inaccessible to all users (i.e., to
encrypt them, but not to provide the keys used for
encryption of these nodes to any user). For the former
case, the symbol � is used, while for the latter case we
use the symbol �. Therefore, the actual definition of
the document-level ACP is that it is pair (�D, �), where
� is either � or �. For simplicity (unless specified
otherwise), in the sequel, we omit the second element
of this pair, and assume that by default it is always �
(i.e. by default, elements of D not covered by �D are
unencrypted).
Definition 4.3
The document-level protection requirement is said to
be satisfied under the following conditions. For an
XML document D, a finite set of roles ����, and the
document-level ACP �D: ��PD a user in role R can
access precisely the set �D(R), and those nodes in D
which are not covered by any path.�

5 KEY GENERATION AND
MULTI-ENCRYPTION

Definition 5.1
A keyring � is a finite set of keys, where each key is a
2-tuple <key name, symmetric key>. By �D,�D we
denote a document-level keyring for the document D
and D’s policy �D.

5.1 Creating Local Paths from
Global Paths

In this section, we describe keyring generation at the
document level, corresponding to a document-level
policy �D: ��PD. If all paths from the set PD are local
then keyring generation can take advantage of the fact
that data in the document D can be used to evaluate all
conditions in these paths, and therefore each path
uniquely identifies a fragment of D. The situation is
more complicated if the policy has some global paths;
for example, it has a parameter-less role and an
associated path with conditions using system variables,
or it has a parameterized role and an associated path
with conditions using formal parameters of this role. In
such cases, conditions in paths can not be evaluated
until values of corresponding free variables are
known. However, postponing keyring generation until
such time would mean that, for a parameterized role, a
keyring would be generated for each user that can play
this role (using specific actual parameters), possibly

resulting in unnecessary duplication of keys.
Therefore, we employ a different technique and deal
with global paths in a special way.

Recall that a global path P contains free variables
representing role parameters and/or system variables.
We require an algorithm that finds all values in P
which are being compared with free variables, and
replaces P with local paths in which these variables are
replaced with values relevant for evaluating
conditions. In the current version, there is a restriction
on the type T of any free variable that may appear in a
global path; specifically, we assume that T has a linear
ordering < and �, here called a linear order that
satisfies the following condition: for any three
elements x, y and z of type T; if x<y, then exactly one
of the following three inequalities holds: z<x,x�z<y,
or y�z. For example, integer or real free variables may
be used. We define intervals of the form(v1, v2) = {v:
v1 < v < v2}, [v 1, v1] = {v: v = v1}, (-�, v1) = {v: v <
v1} and (v1, +�) = {v: v > v1}. Then, the following
property holds: given n arbitrary values v1,v2,...,vn of
type T, and intervals of the form (-�, v1), [v1, v1], (v1,
v2), [v2, v2], … [vn, vn], (vn, +�), the value of variable
x of type T belongs to exactly one of these intervals.
The auxiliary Algorithm 5.1 given below considers a
role R and a global path P, and splits P into one or
more local paths. More specifically, it builds a set of
intervals that partitions the set of values of type T,
based on values from the document D used in
comparisons with free variables in P, and a set of local
paths corresponding to all instantiations of P using
values of the set of intervals.
Algorithm 5.1
Input: A document D, a simple role R (different from �), and a global document path P with n free variables
A1,A2,...,An of respective types T1,T2,...,Tn; each type
Ti has a linear order.
Note that some free variables may represent
parameters of a parameterized role R and others may
represent system variables; in particular R may be
parameter-less and all free variables in P may be
system variables, or vice-versa.
Output: A vector Locals[R] consisting of pairs of the
form (local path, keyring), and a table Intervals(D, R,
P) containing pairs (k-tuples of intervals, index into
Locals). The complexity of this algorithm is linear in
terms of the size of D.

5.3 Generating Keyrings and Encrypting

Consider an XML document D and its document-level
access control policy �D: �	PD, where
��� is a

finite set of roles. In this section, we define a keyring
�D, �D, and show how for each role R�
 this keyring
defines the set �D,�D(R) of R-accessible keys. A user
in role R will be provided with the R-accessible keys,
i.e. the keyring �D,�D(R) allowing her to decrypt the
view �D(R).

We now consider various ways keys may be
assigned to documents. Since views may be
overlapping, we can not assign keys per view. Indeed,
if we did so, then for two overlapping views V1 and V2
we would have two corresponding keys �1 and �2, and
the intersection of the two views would have to be
super-encrypted using both �1 and �2 (assigning keys
per view would mean that the user who has access to
the view Vi would be given a key �i and so other
options such as encrypting V1 with one key and V2-V1
with the other key would have given access to the part
that is not allowed). What we need to do is to partition
the set D (and at the same time each view) into disjoint
sets, and then assign one key for each set in this
partition.

Below, we will assume that all views in �D(�) are
different. If this is not the case, then we proceed as
follows. For the policy �D obtained by removing
duplicate views from �D (and corresponding roles), we
generate a keyring �D,�D (which also defines

�D,�D(R)). Then, we define �D,�D = �D,�D, �D,�D(R) =

�D,�D(R) if R was not a duplicate role, and �D,�D(R) =

�D,�D(R1) if R was removed and R1 is its duplicate
(i.e., R and R1 were associated with the same view).

We assume that conditions that appear in paths can
be evaluated during a single SAX-traversal of the
document D.
Algorithm 5.2
Input: XML document D, and policy �D: ��PD such
that all views in �D(�) are different.
Output: Keyring �D,�D, multi-encrypted XML

document MD, for each R∈�, and two vectors
Global[] and Local[] (which will be used to identify R-
accessible keyrings �D,�D(R), as described below). �
Theorem 5.1
If the user in role R is provided only with R-accessible
keys, then the document-level protection requirement
(cf. Def. 4.3) is satisfied. �

5.4 Decrypting m-documents

Assume that a user U in role R has obtained the
keyring �D,�D(R) of R-accessible keys and wants to
decrypt an m-document MD. U will traverse MD, and
use names of keys from �D,�D(R) to extract the
appropriate key to decrypt R-accessible nodes.

5.5 Obtaining Keyrings

U may request a keyring that she will use to
decrypt a fragment of the m-document D. From the list
of roles U is currently playing, she selects a certain
role R, and then proves that she plays R by presenting
the certificate obtained when U was granted R. Being
in role R, U will specifically request the keyring � of
R-accessible keys for the document D. Let P = �D(R).
If R is a simple role and the path P = �D(R) is a local
path, then � is retrieved from the appropriate keyring
Local[]. If �D(R) is a global path, then the set
Intervals(D, R, P) is consulted. The set of values of
actual parameters (if any) of R and the values of
system variables are used to determine the specific
cube that contains all these values. If there is no such
cube, U has no permissions granted; otherwise, the
keyring at the index associated with this cube is
returned.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we described a parameterized role-
based access control (PRBAC) model allowing
permissions to be specified over fragments of
published XML datasets. Our future work will focus
on implementing the PRBAC model, and designing
and implementing algorithms allowing existing
keyrings to be incrementally altered in response to
update operations performed on the document and/or
access control policy.

REFERENCES

Bertino, E., Ferrari, E. Secure and Selective Dissemination
of XML Documents. ACM Transactions on Information
and System Security (TISSEC), 5(3):290–331, (2002).

Bertino, E., Carminati, B., Ferrari, E., Thuraisingham, B.,
and Gupta A. Selective and Authentic Third-Party
Distribution of XML Documents. IEEE Transactions

on Knowledge and Data Engineering (TKDE),
16(10):1263-1278, (2004).

Damiani, E., De Capitani di Vimercati, S., Paraboschi, S.
and Samarati, P. A Fine-grained Access Control
System for XML Documents. ACM Transactions on
Information and System Security, 5(2): 169-202, (2002).

Devanbu, P., Gertz, M., Kwong, A., Martel, C., Nuckolls, G.
and S.G. Stubblebine. Flexible Authentication of XML
documents. In Proc. of the 8th ACM Conf. on Computer
and Communications Security, ACM Press, (2001).

Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.S. and
Chandramouli, R. Proposed NIST Standard for Role-
Based Access Control. ACM Transactions on
Information and System Security, Vol. 4, No. 3, (2001),
224–274.

Fundulaki, I. and Marx, M. Specifying access control
policies for XML documents. Proceedings of the ninth
ACM symposium on Access control models and
technologies (2004) 61 – 69.

Ge, M. and Osborn., S.L. A Design for Parameterized Roles.
DBSec (2004), 251-264.

Miklau, G. and Suciu, D. Controlling Access to Published
Data Using Cryptography, In Proc. of the 29th VLDB
Conference, Berlin, Germany, (2003).

Müldner, T., Leighton, G. and Miziołek, J.K. Using Multi-
Encryption to Provide Secure and Controlled Access to
XML Documents. Extreme Markup Languages 2006,
(2006), Montreal, Canada.

Osborn, S., Sandhu, R., Munawer, Q. Configuring Role-
Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies. ACM Trans. on
Information and System Security, 3:2, (2000), 85–106.

Role Based Access Control. http://csrc.nist.gov/rbac/.
Wang, J. and Osborn, AS. A role-based approach to access

control for XML databases. Proceedings of the ninth
ACM symposium on Access control models and
technologies Yorktown Heights, US (2004): 70 – 77.

W3C XML Encryption http://w3.org/Encryption/2001.
XML Path Language. http://www.w3.org/TR/xpath.
XML Schema http://www.w3.org/TR/xmlschema-0/

